Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
JAMA Netw Open ; 5(1): e2143955, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1632975

ABSTRACT

Importance: Adverse events (AEs) after placebo treatment are common in randomized clinical drug trials. Systematic evidence regarding these nocebo responses in vaccine trials is important for COVID-19 vaccination worldwide especially because concern about AEs is reported to be a reason for vaccination hesitancy. Objective: To compare the frequencies of AEs reported in the placebo groups of COVID-19 vaccine trials with those reported in the vaccine groups. Data Sources: For this systematic review and meta-analysis, the Medline (PubMed) and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched systematically using medical subheading terms and free-text keywords for trials of COVID-19 vaccines published up to July 14, 2021. Study Selection: Randomized clinical trials of COVID-19 vaccines that investigated adults aged 16 years or older were selected if they assessed solicited AEs within 7 days of injection, included an inert placebo arm, and provided AE reports for both the vaccine and placebo groups separately. Full texts were reviewed for eligibility by 2 independent reviewers. Data Extraction and Synthesis: Data extraction and quality assessment were performed independently by 2 reviewers, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guideline and using the Cochrane risk-of-bias tool. Meta-analyses were based on random-effects models. Main Outcomes and Measures: The primary outcomes were the proportions of placebo recipients reporting overall, systemic, and local (injection-site) AEs as well as logarithmic odds ratios (ORs) to evaluate group differences. Outcomes were tested for significance using z tests with 95% CIs. Results: Twelve articles with AE reports for 45 380 participants (22 578 placebo recipients and 22 802 vaccine recipients) were analyzed. After the first dose, 35.2% (95% CI, 26.7%-43.7%) of placebo recipients experienced systemic AEs, with headache (19.3%; 95% CI, 13.6%-25.1%) and fatigue (16.7%; 95% CI, 9.8%-23.6%) being most common. After the second dose, 31.8% (95% CI, 28.7%-35.0%) of placebo recipients reported systemic AEs. The ratio between placebo and vaccine arms showed that nocebo responses accounted for 76.0% of systemic AEs after the first COVID-19 vaccine dose and for 51.8% after the second dose. Significantly more vaccine recipients reported AEs, but the group difference for systemic AEs was small after the first dose (OR, -0.47; 95% CI, -0.54 to -0.40; P < .001; standardized mean difference, -0.26; 95% CI, -0.30 to -0.22) and large after the second dose (OR, -1.36; 95% CI, -1.86 to -0.86; P < .001; standardized mean difference, -0.75; 95% CI, -1.03 to -0.47). Conclusions and Relevance: In this systematic review and meta-analysis, significantly more AEs were reported in vaccine groups compared with placebo groups, but the rates of reported AEs in the placebo arms were still substantial. Public vaccination programs should consider these high rates of AEs in placebo arms.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Placebos/adverse effects , Arm Injuries/etiology , Fatigue/etiology , Headache/etiology , Humans , Injections, Intramuscular/adverse effects , SARS-CoV-2
2.
Lancet Respir Med ; 9(9): 957-968, 2021 09.
Article in English | MEDLINE | ID: covidwho-1275790

ABSTRACT

BACKGROUND: The major complication of COVID-19 is hypoxaemic respiratory failure from capillary leak and alveolar oedema. Experimental and early clinical data suggest that the tyrosine-kinase inhibitor imatinib reverses pulmonary capillary leak. METHODS: This randomised, double-blind, placebo-controlled, clinical trial was done at 13 academic and non-academic teaching hospitals in the Netherlands. Hospitalised patients (aged ≥18 years) with COVID-19, as confirmed by an RT-PCR test for SARS-CoV-2, requiring supplemental oxygen to maintain a peripheral oxygen saturation of greater than 94% were eligible. Patients were excluded if they had severe pre-existing pulmonary disease, had pre-existing heart failure, had undergone active treatment of a haematological or non-haematological malignancy in the previous 12 months, had cytopenia, or were receiving concomitant treatment with medication known to strongly interact with imatinib. Patients were randomly assigned (1:1) to receive either oral imatinib, given as a loading dose of 800 mg on day 0 followed by 400 mg daily on days 1-9, or placebo. Randomisation was done with a computer-based clinical data management platform with variable block sizes (containing two, four, or six patients), stratified by study site. The primary outcome was time to discontinuation of mechanical ventilation and supplemental oxygen for more than 48 consecutive hours, while being alive during a 28-day period. Secondary outcomes included safety, mortality at 28 days, and the need for invasive mechanical ventilation. All efficacy and safety analyses were done in all randomised patients who had received at least one dose of study medication (modified intention-to-treat population). This study is registered with the EU Clinical Trials Register (EudraCT 2020-001236-10). FINDINGS: Between March 31, 2020, and Jan 4, 2021, 805 patients were screened, of whom 400 were eligible and randomly assigned to the imatinib group (n=204) or the placebo group (n=196). A total of 385 (96%) patients (median age 64 years [IQR 56-73]) received at least one dose of study medication and were included in the modified intention-to-treat population. Time to discontinuation of ventilation and supplemental oxygen for more than 48 h was not significantly different between the two groups (unadjusted hazard ratio [HR] 0·95 [95% CI 0·76-1·20]). At day 28, 15 (8%) of 197 patients had died in the imatinib group compared with 27 (14%) of 188 patients in the placebo group (unadjusted HR 0·51 [0·27-0·95]). After adjusting for baseline imbalances between the two groups (sex, obesity, diabetes, and cardiovascular disease) the HR for mortality was 0·52 (95% CI 0·26-1·05). The HR for mechanical ventilation in the imatinib group compared with the placebo group was 1·07 (0·63-1·80; p=0·81). The median duration of invasive mechanical ventilation was 7 days (IQR 3-13) in the imatinib group compared with 12 days (6-20) in the placebo group (p=0·0080). 91 (46%) of 197 patients in the imatinib group and 82 (44%) of 188 patients in the placebo group had at least one grade 3 or higher adverse event. The safety evaluation revealed no imatinib-associated adverse events. INTERPRETATION: The study failed to meet its primary outcome, as imatinib did not reduce the time to discontinuation of ventilation and supplemental oxygen for more than 48 consecutive hours in patients with COVID-19 requiring supplemental oxygen. The observed effects on survival (although attenuated after adjustment for baseline imbalances) and duration of mechanical ventilation suggest that imatinib might confer clinical benefit in hospitalised patients with COVID-19, but further studies are required to validate these findings. FUNDING: Amsterdam Medical Center Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ZonMW, and the European Union Innovative Medicines Initiative 2.


Subject(s)
COVID-19/therapy , Imatinib Mesylate/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/therapy , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Capillary Permeability/drug effects , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Double-Blind Method , Female , Humans , Imatinib Mesylate/adverse effects , Male , Middle Aged , Netherlands , Oxygen/administration & dosage , Placebos/administration & dosage , Placebos/adverse effects , Protein Kinase Inhibitors/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome
3.
Lancet Respir Med ; 9(4): 360-372, 2021 04.
Article in English | MEDLINE | ID: covidwho-1045088

ABSTRACT

BACKGROUND: Mechanical ventilation in intensive care for 48 h or longer is associated with the acute respiratory distress syndrome (ARDS), which might be present at the time ventilatory support is instituted or develop afterwards, predominantly during the first 5 days. Survivors of prolonged mechanical ventilation and ARDS are at risk of considerably impaired physical function that can persist for years. An early pathogenic mechanism of lung injury in mechanically ventilated, critically ill patients is inflammation-induced pulmonary fibrin deposition, leading to thrombosis of the microvasculature and hyaline membrane formation in the air sacs. The main aim of this study was to determine if nebulised heparin, which targets fibrin deposition, would limit lung injury and thereby accelerate recovery of physical function in patients with or at risk of ARDS. METHODS: The Can Heparin Administration Reduce Lung Injury (CHARLI) study was an investigator-initiated, multicentre, double-blind, randomised phase 3 trial across nine hospitals in Australia. Adult intensive care patients on invasive ventilation, with impaired oxygenation defined by a PaO2/FiO2 ratio of less than 300, and with the expectation of invasive ventilation beyond the next calendar day were recruited. Key exclusion criteria were heparin allergy, pulmonary bleeding, and platelet count less than 50 X 109/L. Patients were randomly assigned 1:1, with stratification by site and using blocks of variable size and random seed, via a web-based system, to either unfractionated heparin sodium 25 000 IU in 5 mL or identical placebo (sodium chloride 0·9% 5 mL), administered using a vibrating mesh membrane nebuliser every 6 h to day 10 while invasively ventilated. Patients, clinicians, and investigators were masked to treatment allocation. The primary outcome was the Short Form 36 Health Survey Physical Function Score (out of 100) of survivors at day 60. Prespecified secondary outcomes, which are exploratory, included development of ARDS to day 5 among at-risk patients, deterioration of the Murray Lung Injury Score (MLIS) to day 5, mortality at day 60, residence of survivors at day 60, and serious adverse events. Analyses followed the intention-to-treat principle. There was no imputation of missing data. The trial is registered with the Australian and New Zealand Clinical Trials Register, number ACTRN12612000418875 . FINDINGS: Between Sept 4, 2012, and Aug 23, 2018, 256 patients were randomised. Final follow-up was on Feb 25, 2019. We excluded three patients who revoked consent and one ineligible participant who received no intervention. Of 252 patients included in data analysis, the mean age was 58 years (SD 15), 157 (62%) were men, and 118 (47%) had ARDS. 128 (51%) patients were assigned to the heparin group and 124 (49%) to the placebo group, all of whom received their assigned intervention. Survivors in the heparin group (n=97) had similar SF-36 Physical Function Scores at day 60 compared to the placebo group (n=94; mean 53·6 [SD 31·6] vs 48·7 [35·7]; difference 4·9 [95% CI -4·8 to 14·5]; p=0·32). Compared with the placebo group, the heparin group had fewer cases of ARDS develop to day 5 among the at-risk patients (nine [15%] of 62 patients vs 21 [30%] of 71 patients; hazard ratio 0·46 [95% CI 0·22 to 0·98]; p=0·0431), less deterioration of the MLIS to day 5 (difference -0·14 [-0·26 to -0·02]; p=0·0215), similar day 60 mortality (23 [18%] of 127 patients vs 18 [15%] of 123 patients; odds ratio [OR] 1·29 [95% CI 0·66 to 2·53]; p=0·46), and more day 60 survivors at home (86 [87%] of 99 patients vs 73 [73%] of 100 patients; OR 2·45 [1·18 to 5·08]; p=0·0165). A similar number of serious adverse events occurred in each group (seven [5%] of 128 patients in the heparin group vs three [2%] of 124 patients in the placebo group; OR 2·33 [0·59 to 9·24]; p=0·23), which were a transient increase in airway pressure during nebulisation (n=3 in the heparin group), major non-pulmonary bleeding (n=2 in each group), haemoptysis (n=1 in the heparin group), tracheotomy site bleeding (n=1 in the heparin group), and hypoxaemia during nebulisation (n=1 in the placebo group). INTERPRETATION: In patients with or at risk of ARDS, nebulised heparin did not improve self-reported performance of daily physical activities, but was well tolerated and exploratory outcomes suggest less progression of lung injury and earlier return home. Further research is justified to establish if nebulised heparin accelerates recovery in those who have or are at risk of ARDS. FUNDING: Rowe Family Foundation, TR and RB Ditchfield Medical Research Endowment Fund, Patricia Madigan Charitable Trust, and The J and R McGauran Trust Fund.


Subject(s)
Critical Care/methods , Heparin/administration & dosage , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/epidemiology , Activities of Daily Living , Administration, Inhalation , Adult , Aged , Australia/epidemiology , Double-Blind Method , Female , Hemoptysis/chemically induced , Hemoptysis/epidemiology , Heparin/adverse effects , Hospital Mortality , Humans , Hypoxia/chemically induced , Hypoxia/epidemiology , Incidence , Male , Middle Aged , Nebulizers and Vaporizers , Placebos/administration & dosage , Placebos/adverse effects , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/prevention & control , Self Report/statistics & numerical data , Severity of Illness Index , Survivors/statistics & numerical data , Time Factors , Treatment Outcome
4.
Trials ; 22(1): 2, 2021 Jan 04.
Article in English | MEDLINE | ID: covidwho-1007151

ABSTRACT

OBJECTIVE: General: To assess the virucidal efficacy of povidone iodine (PVP-I) on COVID-19 virus located in the nasopharynx Specific: i. To evaluate the efficacy of povidone iodine (PVP-I) to removeCOVID-19 virus located in the nasopharynx ii. To assess the adverse events of PVP-I TRIAL DESIGN: This is a single-center, open-label randomized clinical trial with a 7-arm parallel-group design. PARTICIPANTS: The study will be conducted at Dhaka Medical College Hospital, Dhaka, Bangladesh. INCLUSION CRITERIA: All RT-PCR-confirmed COVID-19 cases aged between 15-90 years with symptoms for the past 4 days will be screened. Those who give informed consent, are willing to participate, and accept being randomized to any assigned group will also be considered for final inclusion. EXCLUSION CRITERIA: Patients with known sensitivity to PVP-I aqueous antiseptic solution or any of its listed excipients or previously diagnosed thyroid disease or who had a history of chronic renal failure: stage ≥3 by estimated glomerular filtration rate (eGFR) Modification of Diet in Renal Disease (MDRD) or had acute renal failure (KDIGO ≥stage 2: creatinine ≥2 times from the baseline) or patients who required invasive or noninvasive ventilation or planned within the next 6 hours were considered for exclusion. Moreover, lactating or pregnant women will also be restricted to include here. INTERVENTION AND COMPARATOR: This RCT consist of seven arms: Arm-1 (intervention group): will receive povidone iodine (PVP-I) nasal irrigation (NI) at a concentration of 0.4% Arm-2 (intervention group): will receive PVP-I nasal irrigation at a concentration of 0.5% Arm-3 (intervention group): will receive PVP-I nasal irrigation at a concentration of 0.6%. Arm-4 (intervention group): will receive PVP-I nasal spray (NS) at a concentration of 0.5%. Arm-5 (intervention group): will receive PVP-I nasal spray at a concentration of 0.6%. Arm-6 (placebo comparator group): will receive distilled water through NI Arm-7 (Placebo comparator group): will receive distilled water through NS The intervention arms will be compared to the placebo comparator arms. Other supportive and routine care will be the same in both groups. MAIN OUTCOMES: The primary outcome is the proportion of cases that remain COVID-19 positive following the intervention. It will be assessed from 1 minutes to 15 minutes after the intervention. Any occurrence of adverse effects following the intervention will be documented as a secondary outcome. RANDOMIZATION: The assignment to the study (intervention) or control (comparator) group will be allocated in equal numbers through randomization using random number generation in Microsoft Excel by a statistician who is not involved in the trial. The allocation scheme will be made by an independent statistician using a sealed envelope. The participants will be allocated immediately after the eligibility assessment and consenting procedures. BLINDING (MASKING): This is an open-label clinical trial, and no blinding or masking will be performed. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 189 confirmed cases of COVID-19 will be randomized into seven groups. In each arm, a total of 27 participants will be recruited. TRIAL STATUS: The current trial protocol is Version 1.5 from September 10, 2020. Recruitment began September 30, 2020 and is anticipated to be completed, including data analysis by February 28, 2021. TRIAL REGISTRATION: The trial protocol has been registered in the ClinicalTrials.gov on September 16, 2020. NCT Identifier number: NCT04549376 . FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting the dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , COVID-19 Drug Treatment , Nasopharynx/virology , Povidone-Iodine/administration & dosage , SARS-CoV-2/drug effects , Administration, Intranasal , Adolescent , Adult , Aged , Aged, 80 and over , Bangladesh , COVID-19/diagnosis , COVID-19/virology , Clinical Trials, Phase II as Topic , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Nasal Lavage , Nasal Sprays , Nasopharynx/drug effects , Placebos/administration & dosage , Placebos/adverse effects , Povidone-Iodine/adverse effects , Randomized Controlled Trials as Topic , SARS-CoV-2/isolation & purification , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL